

RAVENNA 2020 Webinar Series

(The "Remote" Sessions)

Update on IEEE 1588-2019

PTP in WAN Applications

Tue, Nov 24, 2020 15:00 h (CET)

Presenter: Andreas Hildebrand, ALC NetworX Daniel Boldt, Meinberg

ALC NetworX

Your Host

Andreas Hildebrand, RAVENNA Technology Evangelist

- more than 25 years in the professional audio / broadcasting industry
- graduate diploma in computer science
- R&D, project & product management experience
- member of AES67 TG and ST2110 DG

ALC NetworX GmbH, Munich / Germany

- established 2008
- R&D center
- developing & promoting RAVENNA
- Partnerships with > 40 manufacturers

MEINBERG

ALC NetworX

RAVENNA

- IP media networking technology
- designed to meet requirements of professional audio / broadcasting applications
- open technology approach, license-free
- fully AES67-compliant (built-in)

Our Guest

Daniel Boldt, Head of Software Development, Meinberg

- Diploma in Media Technology (Thesis done at ZDF, German television)
- 20 years experience with the development of synchronization products
- Main Topics: IEEE 1588, NTP, LANTIME and microSync Firmware platforms

The Synchronization Experts.

MEINBERG, Bad Pyrmont / Germany

- established 1979
- Full-Depth Manufacturer of Time and Frequency Synchronization Equipment (R&D, Production, Sales & Marketing at a single location)
- Time and Sync solutions for all industries (Broadcast, Power, Telecom, Finance, etc..)
- Acquired PTP technology supplier Oregano Systems (Vienna) in 2019
- Active in various standardization bodies (IEEE, ITU, SMPTE, IETF,...)

Agenda

Andreas:

- What's new in IEEE 1588-2019 (PTP v2.1)?
- Must-have or deal-breaker?

Daniel:

- Transporting PTP over WAN the challenges
- Possible solutions
- Real-life PTP-over-WAN example

PTP – An IEEE Standard

- Precision Time Protocol ("PTP") a standard (IEEE 1588) which describes a protocol for transferring time accurately through data networks
- Accurate (sub-µs) time and frequency transfer
- Highly generic standard
- Customizable via PTP profiles
- Already widely used in time-sensitive Ethernet-based applications
 - Telecom, Power, Finance, Test & Measurement, Industrial Automation, ...
- First version: IEEE 1588-2002 (PTP v1)
- Most common version: IEEE 1588-2008 (PTP v2)
- Latest version: IEEE 1588-2019 (PTP v2.1) published in 2020

ØIEEE	
IEEE Standard for a Synchronization Pro Networked Measurer Systems	Precision Clock tocol for ment and Control
IEEE Instrumentation and Mee Sporcered by the Technical Committee on Sencer Technolog	asurement Society _{(P} ,TC-8)
NATE 2 First Sources First No. 10 Topologica and J. Jack Mar Jong Statt	REE ON SMP-2000 Pattern Mar In Statistic

PTP v2.0 – The basis for RAVENNA / AES67 & SMPTE ST 2110

ALC NetworX

AES67 PTP Media profile & SMPTE ST 2059-2 PTP profile

"AES67 Media profile" (Annex to AES67)

- Normative, but optional (PTP Default profile req'd)
- Reduced msg intervals for improved startup and accuracy
- Physical clock requirements (AES11)
- Add'l clock classes (to signal AES11 DARS grade)

Overview on message rates:*

Parameter	Default	Minimum	Maximum
Domain number	0	0	127
Announce interval	2 s	1 s	16 s
Sync interval	125 ms	¹∕ ₁₆ s	2 s
Delay request interval	1	125 ms	32 x Sync interval

SMPTE ST 2059-2 - "SMPTE PTP Profile"

- Normative, mandatory for SMPTE ST 2110
- Further reduced msg intervals for improved startup and accuracy
- Specific PTP rules and clock constraints required by SMPTE application
- SMPTE-specific TLV metadata

Parameter	Default	Minimum	Maximum
Domain number	127	0	127
Announce interval	250 ms (1 s)*	125 ms	2 s
Sync interval	125 ms	¹ / ₁₂₈ s	500 ms
Delay request interval	Sync interval	Sync interval	32 x Sync interval

* AES-R16-2016 summarizes differences & commonalities between ST 2059 / AES67 & PTP Default profiles

PTP Compatibility

Year	Version number	Backward compatible
2002	1	N/A
2008	2	No
2019	2.1	

PTP v2.1 – will it break RAVENNA / AES67 & SMPTE ST 2110 / ST 2059?

PTP Compatibility

Year	Version number	Backward compatible
2002	1	N/A
2008	2	No
2019	2.1	Yes, with v2

"DON'T PANIC!"

From the Bylaws of the IEEE 1588 Working Group:

"The working group shall ensure that the resulting draft has the highest degree of backward compatibility possible with the previous edition of IEEE 1588..."

Backward compatibility means:

- PTP v2.1 devices^{*} work in PTP v2.0 networks and won't compromise it (*Leaders as well as Followers)
- PTP v2.1 features are optional
- PTP v2.0 features work as before

PTP v2.1 – what's new?

- Enhancements and changes to
 - o make the standard clearer
 - o add flexibility to the protocol
 - \circ add robustness to the protocol
 - o increase accuracy
- Some of these features were taken from existing PTP profiles

PTP v2.1 – adding flexibility

- Mixed multicast / unicast operation
 - Announce and Sync messages are multicast, DelayRequest and DelayResponse are unicast
 - Better scalability in larger systems with E2E synchronization
 - New TLV in Announce to inform about Master clock unicast address (for DelayRequests)
 - New multicast message to inform about Slave clock unicast address (for DelayResponse)
- Modular Transparent Clocks
 - TCs can now be built in a blade server or SFP architecture
 - "Stepness" now a port property (instead a clock property)
 - Addresses potential issues with mixed 1 / 2 step operation
- Special PTP ports
 - interfacing to network technologies which have their own built-in timing mechanism,
 e.g. EPON or WiFi

- Profile isolation
 - Running multiple (incompatible) profiles on the same network
 - Could be solved in PTP v2.0 by assigning different domain numbers (but tedious and error-prone)
 - PTP v2.1 introduces profiled ID assigned to SDOs (SdoID)
 - Fully backward-compatible by using previously reserved fields in PTP message header

Bits		Ostata Offast	Offeet	Bits				0.65	
7 6 5 4	3 2 1 0	Octets Offset	7 6	5 4	3 2 1 0	Octets	Offset		
transportSpecific	messageType	1	0	maj	orSdoId	messageType	1	0	
reserved	versionPTP	1	1	minor	VersionPTP	versionPTP	1	1	
messageL	ength	2	2	messageLength		messageLength		2	2
domainNu	umber	1	4	4 domainNumber		domainNumber		1	4
reserve	ed	1	5	minorSdoId		1	5		
flagFie	eld	2 6 flagField		2	6				
correction	Field	8	8	8 correctionField		8	8		
reserved		erved 4 16 messageTypeSpecific		4	16				
sourcePortIdentity		10	20	sourcePortIdentity		10	20		
sequenc	sequenceId 2 30 sequenceId		2	30					
controlF	ield	1	32	controlField		1	32		
logMessage	Interval	1	33	33 logMessageInterval		logMessageInterval		1	33

ALC NetworX

PTP v2.1 – adding robustness

- Profile isolation
 - Running multiple (incompatible) profiles on the same network
- Inter-domain interactions
 - Running multiple domains on the same network to increase robustness (requires multi domain OC)

PTP v2.1 – inter-domain interaction

PTP v2.1 – inter-domain interaction

- Profile isolation
 - Running multiple (incompatible) profiles on the same network
- Inter-domain interactions
 - Running multiple domains on the same network to increase robustness (requires multi domain OC)
- Security
 - Addition of security guidelines
 - Definition of an AUTHENTIFICATION TLV for messages, adding source integrity checking

Transport	PTP	PTP	Other	AUTHENTICATION	ICV
Header	Header	Payload	PTP TLVs	TLV	
			cryptographi	c Integrity Check Value	

- Profile isolation
 - Running multiple (incompatible) profiles on the same network
- Inter-domain interactions
 - Running multiple domains on the same network to increase robustness (requires multi domain OC)
- Security
 - Addition of security guidelines
 - Definition of an AUTHENTIFICATION TLV for messages, adding source integrity checking
- Standard performance metrics
 - Definition of a standard format for performance statistics
 - ✤ average / min / max / standard dev values of
 - offset from master + various delay metrics
 - message reception counters
 - for 15 minute intervals within 24 h

- Profile isolation
 - Running multiple (incompatible) profiles on the same network
- Inter-domain interactions
 - Running multiple domains on the same network to increase robustness (requires multi domain OC)
- Security
 - Addition of security guidelines
 - Definition of an AUTHENTIFICATION TLV for messages, adding source integrity checking
- Standard performance metrics
 - Definition of a standard format for performance statistics
- Slave port monitoring
 - Definition of TLVs to support active slave port monitoring
 - ✤ Slave RX Sync Timing Data TLV
 - Slave RX Sync Computed Data TLV

Slave TX Event Timestamps TLV

PTP v2.1 – increasing accuracy

- Originating from the "White Rabbit" project (CERN)
- Targeting at achieving sub-nanoseconds accuracy
- Optional extensions to the "core" IEEE 1588 Std
 - Manual Port Configuration
 - Static configuration of port states (master / slave / disabled), bypassing BMCA
 - ✤ Quick start of network timing system, no dynamic changes of link delays
 - No automatic reconfiguration in case of any failure (i.e. no GM backup)
 - Physical layer (L1) syntonization
 - Syntonization between PTP clock layer and network L1 clock layer (i.e. SyncE) by referencing PTP clock to L1 clock
 - Configurable timestamp correction + asymmetry calibration
 - Ability to configure ingress + egress latencies
 - Including calibration of PHY asymmetry for different media (i.e. bidirectional fiber)
 - High Accuracy Default PTP Profile
 - Defining all necessary operating parameters and requirements to achieve sub-nanoseconds accuracy

PTP v2.1 – Summary of new features

- More flexibility
 - Mixed multicast/unicast
 - Modular TCs (e.g. Special SFPs)
 - Special ports (Timing transfer)
- Improved robustness
 - Profile Isolation
 - Interdomain interactions
 - Security TLV
 - Standard metrics
 - Slave port monitoring

- Increased Accuracy
 - Manual port configuration
 - Layer-1 syntonization
 - Calibration
 - HA profile

Backwards compatibility to V2 remains! A PTPv2 Slave will sync to a v2.1 master!

PTP v2.1 – a "must-have" for RAVENNA / AES67 & SMPTE ST 2110?

- All standards / profiles (and their upcoming revisions) are still referring to IEEE 1588-2008
- None of these are "broken" by continuing to reference to PTP v2.0.
- Current and future systems can rely on accurate and reliable operation as provided by PTP v2.0.
- Most useful features of PTP v2.1:
 - Mixed Multicast/Unicast operation for large network environments
 - Modular Transparent clocks for setting up cloud environments with tight synchronization
 - Profile isolation for running different PTP profiles (i.e. ST 2059 and AES67)
 - Inter-domain interactions for building networks with higher reliability and robustness
 - Security protecting networks from malicious message insertion
 - Slave port monitoring (together w/ standard performance metrics) more reliable operation status
 - Special PTP ports might be useful in certain WAN applications

How to evolve towards PTP v2.1

- The "engineering" way (system planning)
 - PTP v2.1 devices can be added safely to the network without breaking operation
 - New features or improvements can added / enabled as needed / supported
- The "standards" way (by AES67 / ST 2110 & ST 2059 DGs):
 - Careful evaluation of useful features
 - Introduction of selected features into upcoming revisions
 - Trying to preserve backwards compatibility wherever possible

Summary

- PTP v2.1 introduces new (optional) features on
 - flexibility
 - robustness
 - accuracy

which may partly be beneficial for media system environments.

- All enhancements of PTP v2.1 are fully backwards-compatible with PTP v2.0.
- RAVENNA / AES67 & SMPTE ST 2110 are not broken by continuing to reference PTP v2.0; current and future systems can rely on accurate and reliable operation as provided by PTP v2.0.

IEEE Std 1588-2019 (PTP v2.1) is neither a must-have nor a deal-breaker.

PTP in WAN Applications

Daniel Boldt

The Synchronization Experts.

Challenges when transporting PTP over WAN connections:

1) Unpredictable "Packet Delay Variation - PDV"

-> "Packet Jitter" that affects Slave accuracy and stability ("Dynamic Time error" - dTE)

low PDV (",ptp-aware" connection):

PTP Offset

ALC NetworX

Reason for packet delay variation:

- Queueing delays in non ptp-aware network equipment
- Amount of delay depends on switch performance and traffic load
- PTP packet needs to "wait" before leaving the switch in case a larger packet is sent out just before

2) Asymmetry between Receive and Transmit path

M2S delay = 3 μs S2M delay = 8 μs

One example: Link Speed conversion 1GB -> 100 Mbit "Store-and-forward" vs. "Cut-through"

Round Trip Delay = 11 μ s calculated One-Way Delay = 5.5 μ s

Real Delay: 3 µs

Results in Constant Time Error (cTE) of 2.5 µs time offset in end node

3) Network Path Re-Arrangements

ALC NetworX

Solutions for the Infrastructure (if possible):

- PTP-enabled Switches/Routers (BCs or TCs)
- Dedicated Wavelength in DWDM systems
- Dark Fibre connection (often not possible or expensive)

Solutions for PTP Slave Systems:

- High-Quality oscillator to allow long-term PTP statistics and analysis while maintaining stability
- Advanced adaptive PTP filter mechanisms
- Asymmetry Step detection (for path re-arrangements)
- Automatic link asymmetry calibration with reference
- Gateway clock ("Edge Grandmaster") provides "clean"
 PTP Master signal to local PTP clients at remote site

Mitigating Packet delay variation:

Master \rightarrow Slave approx. 100 µs jitter

Slave \rightarrow Master: approx. 60 µs jitter

Resulting Asymmetry: approx. 8 µs

Calnex Paragon-X used as Impairment generator

ALC NetworX

One-Way Delays measured over the network (M2S and S2M)

Select the "Lucky Packets" → fastest packets with the lowest delays

Lucky Packet Filter will reduce Packet Delay Variation dramatically

 \rightarrow Better Slave Stability

- Lucky packet filters select some sync messages and some delay request messages to use and discard the rest.
 - Sync messages with the lowest Master-to-Slave time (t2-t1)
 - Delay request messages with lowest Slave-to-Master time difference (t4-t3)
 - These messages assumed to have little or no queuing delay

PTP in WAN Applications

Real Life Example WDR – Remote Studio synchronization: two sites in Cologne

Real Life Example WDR – Remote Studio synchronization two sites in Cologne

PTP input after Lucky packet Filter (<+-50ns)

Offset [s]

🛑 PTP Offset 🛛 🔵 Path Delay

GNSS grade synchronization via high quality long-range fibre connection

Real Life Example WDR – Remote Studio synchronization Cologne - Dortmund

Real Life Example WDR – Remote Studio synchronization Cologne - Dortmund

PTP input after Lucky packet Filter (<+-500ns)

Real Life Example WDR – Remote Studio synchronization Cologne - Dortmund

PTP clock inputs after Asymmetry step detection

Output accuracy of clock: < 100 ns

MEINBERG

Target accuracy at remote site sufficient for RAVENNA network GPS antenna not required!

Questions?

More answers...

RAVENNA / AES67 / SMPTE ST 2110 Resources:

www.ravenna-network.com/resources

PTP Resources:

www.meinbergglobal.com/english/info

blog.meinbergglobal.com

Contact information:

Andreas Hildebrand ALC NetworX GmbH

ravenna@alcnetworx.de

www.ravenna-network.com

